Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods.
نویسندگان
چکیده
In this paper, we develop a method of forming pharmacokinetic-rate images of indocyanine green (ICG) and apply our method to in vivo data obtained from three patients with breast tumors. To form pharmacokinetic-rate images, we first obtain a sequence of ICG concentration images using the differential diffuse optical tomography technique. We next employ a two-compartment model composed of plasma, and extracellular-extravascular space (EES), and estimate the pharmacokinetic rates and concentrations in each compartment using the extended Kalman filtering framework. The pharmacokinetic-rate images of the three patient show that the rates from the tumor region and outside the tumor region are statistically different. Additionally, the ICG concentrations in plasma, and the EES compartments are higher around the tumor region agreeing with the hypothesis that around the tumor region ICG may act as a diffusible extravascular flow in compromised capillary of cancer vessels. Our study indicates that the pharmacokinetic-rate images may provide superior information than single set of pharmacokinetic rates estimated from the entire breast tissue for breast cancer diagnosis.
منابع مشابه
Spatially Resolved Pharmacokinetic Rate Images of ICG using Near Infrared Optical Methods
In this work, we present spatially resolved pharmacokinetic rate images of indocyanine green (ICG) obtained from three breast cancer patients using near infrared imaging methods. We used a two-compartment model, namely, plasma and extracellular extravascular (EES), to model ICG kinetics around the tumor region. We introduced extended Kalman filtering (EKF) framework to estimate the ICG pharmaco...
متن کاملIn vivo continuous-wave optical breast imaging enhanced with Indocyanine Green.
We investigate the uptake of a nontargeted contrast agent by breast tumors using a continuous wave diffuse optical tomography apparatus. The instrument operates in the near-infrared spectral window and employs 16 sources and 16 detectors to collect light in parallel on the surface of the tumor-bearing breast (coronal geometry). In our protocol an extrinsic contrast agent, Indocyanine Green (ICG...
متن کاملImproving 3-D Imaging Breast Cancer Diagnosis Systems Using a New Method for Placement of Near-Infrared Sources and Detectors
The objective of this research was to improve 3-D imaging system by near-infrared light emission in breast tissue to achieve a more accurate diagnosis of tumor. The results of repeated experiments in this research have shown that with this imaging system, a more accurate diagnosis of abnormal area depends on the location of the sources and detectors. Therefore, an optimal location model has bee...
متن کاملConcurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement.
We present quantitative optical images of human breast in vivo. The images were obtained by using near-infrared diffuse optical tomography (DOT) after the administration of indocyanine green (ICG) for contrast enhancement. The optical examination was performed concurrently with a magnetic resonance imaging (MRI) exam on patients scheduled for excisional biopsy or surgery so that accurate image ...
متن کاملCongruent MRI and near-infrared spectroscopy for functional and structural imaging of tumors.
We present a combined near-infrared diffuse optical spectroscopy (DOS) and Magnetic Resonance Imaging (MRI) system for the study of animal model tumors. A combined broadband steady-state and frequency domain optical spectroscopy apparatus was integrated with the MRI. The physiological properties of tissue rendered by MRI, including vascular volume fraction and water, were compared with chromoph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 53 4 شماره
صفحات -
تاریخ انتشار 2008